Sharp existence and classification results for nonlinear elliptic equations in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup><mml:mo>∖</mml:mo><mml:mo stretchy="false">{</mml:mo><mml:mn>0</mml:mn><mml:mo stretchy="false">}</mml:mo></mml:math> with Hardy potential
نویسندگان
چکیده
For $N\geq 3$, by the seminal paper of Brezis and V\'eron (Arch. Rational Mech. Anal. 75(1):1--6, 1980/81), no positive solutions $-\Delta u+u^q=0$ in $\mathbb R^N\setminus \{0\}$ exist if $q\geq N/(N-2)$; for $11$ $\theta\in \mathbb R$, we prove that nonlinear elliptic problem (*) u-\lambda \,|x|^{-2}\,u+|x|^{\theta}u^q=0$ with $u>0$ has a solution only $\lambda>\lambda^*$, where $\lambda^*=\Theta(N-2-\Theta) $ $\Theta=(\theta+2)/(q-1)$. We show (a) $\lambda>(N-2)^2/4$, then $U_0(x)=(\lambda-\lambda^*)^{1/(q-1)}|x|^{-\Theta}$ is (b) $\lambda^*<\lambda\leq (N-2)^2/4$, radially symmetric their total set $U_0\cup \{U_{\gamma,q,\lambda}:\ \gamma\in (0,\infty) \}$. give precise behavior U_{\gamma,q,\lambda}$ at infinity, distinguishing between $1\max\{q_{N,\theta},1\}$, $q_{N,\theta}=(N+2\theta+2)/(N-2)$. addition, $\theta\leq -2$ settle structure $\Omega\setminus \{0\}$, subject to $u|_{\partial\Omega}=0$, $\Omega$ smooth bounded domain containing zero, complementing works C\^{\i}rstea (Mem. Amer. Math. Soc. 227, 2014) Wei--Du (J. Differential Equations 262(7):3864--3886, 2017).
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Existence of ground state solutions for a class of nonlinear elliptic equations with fast increasing weight
This paper is devoted to get a ground state solution for a class of nonlinear elliptic equations with fast increasing weight. We apply the variational methods to prove the existence of ground state solution.
متن کاملExistence and non-existence results for fully nonlinear elliptic systems
We study systems of two elliptic equations, with right-hand sides with general power-like superlinear growth, and left-hand sides which are of Isaac’s or Hamilton-Jacobi-Bellman type (however our results are new even for linear lefthand sides). We show that under appropriate growth conditions such systems have positive solutions in bounded domains, and that all such solutions are bounded in the...
متن کاملExistence and uniqueness results for a nonlinear differential equations of arbitrary order
This paper studies a fractional boundary value problem of nonlinear differential equations of arbitrary orders. New existence and uniqueness results are established using Banach contraction principle. Other existence results are obtained using Schaefer and Krasnoselskii fixed point theorems. In order to clarify our results, some illustrative examples are also presented.
متن کاملExistence Results for a Dirichlet Quasilinear Elliptic Problem
In this paper, existence results of positive classical solutions for a class of second-order differential equations with the nonlinearity dependent on the derivative are established. The approach is based on variational methods.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2021
ISSN: ['1090-2732', '0022-0396']
DOI: https://doi.org/10.1016/j.jde.2021.05.005